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The dynamic stability of a cantilever beam attached to a translational/
rotational base is studied in this paper. Equations of motion for the simple
¯exure cantilever beam with a tip mass are derived by Hamilton's principle,
and then transformed into a set of ordinary di�erential equations by applying
variable transformation and the Galerkin method. Hsu's method is extended to
investigate the instability regions of the non-homogeneous solutions. The main
objective of this paper is to identify instability regions of the system for various
combinations of the excitation frequencies and amplitudes of the oscillations.
The instability regions of the system with and without tip mass and e�ects of
the rotational angle velocities are compared and discussed by using Hsu's and
Bolotin's methods.
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1. INTRODUCTION

The dynamic problems of a cantilever beam attached to a moving base are
associated with various applications such as elastic linkages, rotating machinery,
robot manipulator arms, aircraft propellers, helicopter rotor blades, ¯exible
satellites, the textile industry, and ¯exible appendages of a spacecraft. The
dynamic stability of ordinary differential equations with periodic coef®cients was
studied using Hsu's method [1], wherein a ®rst approximation analysis was
carried out and criteria for instability were derived. Most studies only considered
lateral de¯ection, and homogeneous solutions are solved using Hsu's method.
Elmaraghy and Tabarrok [2] employed both Hsu's and Bolotin's [3] methods to
investigate the dynamic stability of an axially oscillating Euler beam.
Numerous studies have used different theories and techniques to investigate

the dynamic stability of belts and chains in mechanical machinery [4±6].
Tsuchiya [7] analyzed the attitude behavior of a spacecraft with a rotor during
extension of ¯exible appendages. Wang and Wei [8] studied a ¯exible robot arm
as a moving slender prismatic beam. Kane et al. [9] investigated a Timoshenko
beam built into a rigid base undergoing general three-dimensional motion.
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In order to obtain the deployment responses of a ¯exible beam, Creamer [10]
presented a model using Timoshenko beam theory in conjunction with base
oscillatory motion. Yuh and Young [11] derived a time-varying partial
differential equation and boundary conditions for an axially moving beam with
rotation. Tadikonda and Baruh [12] presented a complete dynamic model for a
translating ¯exible beam with a prismatic joint. Stylianou and Tabarrok [13, 14]
solved an axially moving beam problem by using ®nite element method in which
elements are functions of time. Lee [15] exploited the properties of eigenfunctions
of a uniform ®xed±free beam. The equations of motion were formulated in
matrix form for the dynamic responses of an orthotropic rotating shaft moving
longitudinally over a spring support.
In this paper, Hamilton's principle is appled to derive the governing equations

of a cantilever beam attached to a translational/rotational base. The variable
transformation and Galerkin method are employed to discretize the distributed
system to a set of ordinary differential equations. In this study, Hsu's method is
extended to solve the non-homogeneous problems. The main objective of this
paper is to identify the regions of instability for various combinations of the
excitation frequencies and amplitudes of the oscillations using both Hsu's and
Bolotin's methods.

2. EQUATION FORMULATION

In this section, Hamilton's principle is employed to derive the governing
equations of a cantilever beam attached to a translational/rotational base, which
is shown in Figure 1. A point mass me is attached at the tip end of the cantilever
beam. Material properties of the beam are length `, mass density r, ¯exural
rigidity EI and uniform cross-section area Ae. The beam is attached to a rigid
base which moves translationally and rotationally in the XY-plane. The co-
ordinate system OXY is a ®xed inertia one. The moving co-ordinate system oxy

Figure 1. Schematic of a cantilever beam attached to translational/rotational base.
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is attached to the rigid base which has the translational/rotational motion. The
origin o is located at the rotating point and its potion vector r0 is (a(t), b(t)) and
is measured from the ®xed co-ordinate. In Appendix A, Timoshenko beam
theory is used to derive the governing equations. A reduction process of the
system equations through various theories is also presented.

2.1. SIMPLE FLEXURE MODEL

The simple ¯exure model assumes that the axial deformation can be ignored
but the inertia effect of the translational and rotational motions of the base is
retained. The geometric stiffening effects caused by the coupling between the
axial and transverse deformations are not included. From Appendix A one has
the resultant equation of motion

EIvxxxx � rAvtt ÿ rA
�

_y2�vÿ xvx � 1
2�`2 ÿ x2�vxx� ÿ 2 _y vtvx ÿ

�`
x

vtvxx dx

� �

ÿ �y x� vvx ÿ
�`
x

vvxx dx

� �
� �ÿbtt � att�vx ÿ �`ÿ x�vxx�� cos y

� �att � btt�vx ÿ �`ÿ x�vxx�� sin y
�

�mevxx�att cos y� btt sin yÿ 2 _yvt�`, t� ÿ �yv�`; t� ÿ _y2`� � 0, �1�
and the boundary conditions

v�0, t� � vx�0, t� � vxx�`, t� � 0, �2a--c�

EIvxxx�`, t� ÿme�vtt�`, t� � �y�`� v�`, t�vx�`, t�� � _y2�vx`ÿ v�`, t��

� 2 _yvxvt � �btt ÿ vxatt� cos yÿ �att � vxbtt� sin y� � 0: �2d�
Equation (2d) is the dynamic equilibrium equation for the tip mass, which
includes elastic shear force and inertia force due to motions of both translation
and rotation of the base.
The merit of the simple ¯exure model is that only one governing equation will

be solved and the effect of translational/rotational base is still retained in the
governing equation (1) and boundary condition (2d). However, the boundary
condition (2d) is non-homogeneous, and a special variable transformation is
required before the Galerkin method is applied.

2.2. VARIABLE TRANSFORMATION

First, one introduces some non-dimensional quantities as follows:

V � v=`, t � oTt, x � x=`, Y � _y=oT, A�t� � a�t�=`,
B�t� � b�t�=`, �me � me=rAe`,

�3�

where o2
T � EI=rAe`

4.
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Substituting (3) into equation (1) and assuming _y is constant, one has the
dimensionless governing equation

Vxxxx � Vtt ÿ �Y2�Vÿ xVx � 1
2�1ÿ x2�Vxx�� � 2Y VtVx ÿ

�1
x
VtVxx dx

� �
ÿ fÿBtt � Att�Vx ÿ �1ÿ x�Vxx�g cosYt

ÿ fAtt � Btt�Vx ÿ �1ÿ x�Vxx�g sinYt

� �meVxx�Att cosYt� Btt sinYtÿ 2YVt ÿY2� � 0, �4�
and the boundary conditions become

Vxxx�1, t� ÿ �mefVtt�1, t� � 2YVx�1, t�Vt�1, t� �Y2�Vx�1, t� ÿ V�1, t��
� �Btt ÿ Vx�1, t�Att� cosYtÿ �Att � Vx�1, t�Btt� sinYtg � 0, �5�

V�0, t� � Vx�0, t� � Vxx�1, t� � 0: �6a--c�
In order to apply the Galerkin method, it is necessary to simplify the non-

homogeneous boundary condition (5) by using the following variable
transformation [16] as

V�x, t� � �V�x, t� � F�x�h�t�: �7�
where F�x� � 1

24x
4 ÿ 1

2x
2 and h�t� � Vxxx�1, t�. Substituting equation (7) into

equations (4), (5) and (6a, b, c), one obtains the following equation of motion

�Vxxxx � �me�Att cosYt� Btt sinYt� 2Y�Vt � 2YFht ÿY2��Vxx

� �Y2 ÿ Btt sinYtÿ Att cosYt��Vx � �Vtt ÿY2 �V� httF

� Btt cosYtÿ Att sinYt

� h�ÿY2�Fÿ Fx� � 1ÿ AttFx cosYtÿ BttFx sinYt�
� �meFxx�Att cosYt� Btt sinYt� 2Y�Vt � 2YFht ÿY2�
� 2Y��Vt �Vx � hFx �Vt � htF�Vx � hhtFFx� � 0, �8�

and the homogeneous boundary conditions

�V�0, t� � �Vx�0, t� � �Vxx�1, t� � �Vxxx�1, t� � 0, �9a-- d�
thus equation (5) becomes

�me
�Vtt�1, t� � �meFhtt ÿ �me�Att cosYt� Btt sinYtÿY2��Vx�1, t� ÿ �meY2 �V�1, t�
ÿ h�Fxxx � �meY2�Fÿ Fx� � �meFx�Att cosYt� Btt sinYt��
� �me�Btt cosYtÿ Att sinYt�
� 2Y �me��Vx�1, t��Vt�1, t� � httF�Vx�1, t� � hFx �Vt�1, t� � hhtFFx� � 0: �10�

After the variable transformation (7), the non-homogeneous boundary condition
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(5) is changed to homogeneous boundary condition (9) and one additional
equation (10).

3. THE DISCRETIZED EQUATION

The governing equation (8) of the cantilever beam attached to a translation/
rotational base does not lend itself to a closed-form solution. To obtain the
approximate solutions, the displacement �V�x, t� can be expressed as a series in
terms of a given shape function fi(x) with an undetermined coef®cient fi(t),
where fi(x) satis®es the kinematical boundary conditions (9a±d). To obtain the
approximate solutions, n terms of the assumed modes are used to expand the
continuous displacement ®eld �V�x, t� as

�V�x, t� �
Xn
i�1

fi�x� fi�t�: �11�

To obtain the instability regions by applying both Hsu's and Bolotin's
methods, by substituting equation (11) into equation (8) and applying the
Galerkin method in the linearized system, one obtains the governing equation

�fi � o2
ie fi � ÿ �me

Xn
j�1

Nij ÿ
Xn
j�1

Qij

 !
�Att cosYt� Btt sinYt�

" #
fi

� Btt cosYtÿ Att sinYt� z, �12�
where

o2
ie � Y2�Qii ÿ �meNii ÿDii� �Mii,

z � ÿhttFÿ h�ÿY2�Fÿ Fx� � 1ÿ AttFx cosYtÿ BttFx sinYt

� �meFxx�Att cosYt� Btt sinYtÿY2��,
and Qii, Nij, Dij and Mij are shown in Appendix B.

4. STABILITY ANALYSIS BY HSU'S METHOD

Hsu's method [1] is a special perturbation method and combines the method
of variation of parameters and the series expansion of the perturbation method.
The origin position, (A(t), B(t)), of the translational/rotational base is assumed
to be a small perturbation parameter as follows:

A�t� � e cos �Yt, B�t� � e sin �Yt, �13a, b�
where �Y is the frequency of translational motion in the X and Y directions and
e> 0 is a small parameter.
By substituting equation (13a, b) into equation (12), and using trigonometric

identities, one gets a different equation with small periodic perturbations as:
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d2fi
dt2
� o2

ie fi � ÿe �Y2
Xn
i�1

Xn
j�1

Qij ÿ �me

Xn
j�1

Nij

 !
cos� �YÿY�t

" #
fi

� e �Y2 sin� �YÿY�t� z: �14�
As e=0, the non-homogeneous solution of equation (14) is

fi�t� � Aiq�t� cosoiet� Biq�t� sinoiet� z=o2
ie, �15a�

and the solution for e> 0 in a ®rst order approximation is assumed to be of the
form

fi�t� � Aiq�t� cosoiet� Biq�t� sinoiet� z=o2
ie � ef �1�ip �t�, �15b�

where Aiq(t) and Biq(t) are the slowly varying functions of time.
From Hsu's method [1], the particular integral in (15b) is obtained as

f
�1�
ip �t� � ÿ

1

2

Xn
i, j�1

�
1

o2
ie ÿ � �YÿY� oje�2

�Tij cos� �YÿY� oje�t

� Vij sin� �YÿYÿ oje�t�

� 1

o2
ie ÿ � �YÿYÿ oje�2

�Uij cos� �YÿYÿ oje�t�Wij sin� �YÿYÿ oje�t�

ÿ 2
1

o2
ie ÿ � �YÿY�2

" #
�Eij cos� �YÿY�t� Fij sin� �YÿY�t�

�
, �16�

where Tij, Vij, Uij, Wij, Eij and Fij are functions of Ai and Bi. These coef®cients
depend upon the physical properties of the system and are de®ned in Appendix
B.

4.1. STABILITY ANALYSIS OF BEAM WITH TIP MASS

For the homogeneous solutions, Eij and Fij must be deleted in equation (16).
Three cases using Hsu's method will be discussed: (1) o1e is near 1

2� �YÿY�. In
this case the denominator o2

1e ÿ � �YÿYÿ oje�2 approaches zero in equation

TABLE 1

Results from application of Hsu's method

o1e � 1
2� �YÿY� o1e � o2e1 �YÿY o2e ÿ o1e1 �YÿY

Unstable l21e < a l22e < b l23e < g
Neutrally stable l21e � a l22e � b l23e � g
Aiq and Biq are periodic l21e > a l22e > b l23e > g
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(16), a solution is sought for 2o1e � el1e � �YÿY, and l1e is a ®nite real number
(2) o1e+o2e is near �YÿY. In this case the denominators o2

1e ÿ � �YÿYÿ oje�2
of the equation (16) approach zero as oje=o2e and o2 ÿ � �YÿYÿ oje�2
approach zero as oje � o1e, a solution is sought for �YÿY � o1e � o2e � el2e,
and the case is known as ``combination resonance of the sum type''. (3) o2eÿo1e

is near �YÿY. In this case the denominators o2
1e ÿ � �YÿYÿ oje�2 of equation

(16) approach zero as oje=o2e, and o2
2 ÿ � �YÿY� oje�2 approach zero as

oje=o1e, and a solution is sought for �YÿY � o2e ÿ o1e � el3e. This case is
called ``combination resonance of the difference type''. The following results are
found by using Hsu's method:

a � k211=4o
2
1e, b � �k12��k21�=4o1eo2e, g � ÿ�k21��k12�=4o1eo2e:

In this paper, Hsu's method is extended to investigate the non-homogeneous
solutions of equation (14). The derivative can be seen in Appendix C. The
denominator o2

1e ÿ � �YÿY�2 is nearly equal to zero, and a solution is found for
o1e � el � �YÿY where l is a ®nite real number. Thus, one has

B1q � ÿ e
o1e

E1j
sin�2� �YÿY� ÿ el�t

2� �YÿY� ÿ el
� sin elt

el

� �

� e
o1e

F1j
cos�2� �YÿY� ÿ el�t

2� �YÿY� ÿ el
� cos elt

el

� �

ÿ z

o1e

1ÿ o2
1e

o2
1e

� �
sin� �YÿYÿ el�t

�YÿYÿ el

� �
� c, �17�

where c is a constant. From equation (17), B1q is unstable only for l=0 or
e=0. Similarly, one has

A1q � e
o1e

E1j ÿ cos�2� �YÿY� ÿ el�t
2� �YÿY� ÿ el

� cos�elt�
el

� �

� e
o1e

F1j ÿ sin�2� �YÿY� ÿ el�t
2� �YÿY� ÿ el

� sin�elt�
el

� �

ÿ z

o1e

1ÿ o2
1e

o2
1e

� �
coso1et

�YÿYÿ el

� �
� c1, �18�

where c1 is a constant and A1q is unstable only for l=0 or e=0. Following
similar procedures, equations for A2q and B2q are:

A2q � ÿ z

o2e

� �
1ÿ o2

2e

o2
2e

� �
coso2et
o2e

, B2q � ÿ z

o2e

� �
1ÿ o2

2e

o2
2e

� �
sino2et
o2e

:

�19, 20�
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4.2. STABILITY ANALYSIS FOR THE BEAM WITHOUT TIP MASS

As the system is without the tip mass, me=0 is substituted into the governing
equation (1) and boundary conditions. Equation (12) can be simpli®ed as:

�fi � o2
ig fi � ÿe� �Y2�Q� cos� �YÿY�t� fi � e �Y2 sin� �YÿY�t, �21�

where o2
ig �Mii � �Y2�Qii ÿDii�.

The homogeneous solution of equation (21) is substituted by using Hsu's
method [1]. Three cases similar to section 4.1 are as follows: (1) �YÿY �
2o1g � el1g; condition for the instability regions of the system is l21g < d211=4o

2
1g.

(2) �YÿY � o1g � o2g � el2g; condition for the instability regions is
l22g < �d12��d21�=4o1go2g. (3) �YÿY � o2g ÿ o1g � el3g; condition for the
instability regions is l23g < ÿ�d12��d21�=4o1go2g, where dij �

Pn
j�1 Qij.

The non-homogeneous solutions are solved next via a similar method as set
out in Appendix C. One gets A2g=A20, B2g=B20, where A20 and B20 are
constants and the stability criterion depends on A1g and B1g. If
o1g+ elg= �YÿY or e= lg=0, one obtains

A1g � �ef 0=2o1g��tÿ sin�2o1g�t=2o1g� � C1g, �22�

B1g � �ef 0=2o1g� cos�2o1g�t� C2g, �23�
where C1g and C2g are constants. When e 6� 0 or lg 6� 0,

A1g � �ef 0=2o1g��sin elgt=elg ÿ sin�2o1g ÿ elg�t=�2o1g ÿ elg�� � C1g, �24�

B1g � ÿ�ef 0=2o1g��ÿ cos�2o1g � elg�t=�2o1g � elg� ÿ cos elgt=elg� � C2g: �25�
From equations (24) and (25), when lg=0 or o1g= �YÿY, A1g is unstable

but B1g is stable as t increases.

4.3. AXIAL TRANSLATIONS ONLY

As the system is without the tip mass (me=0) and only has the axial
translations in the x direction �y � _y � �y � 0�, the governing equation (1) of the
simple ¯exure beam can be reduced to

EIVxxxx � rAVtt ÿ rAfÿbtt � att�Vx ÿ �Lÿ x�Vxx�g � 0, �26�
and boundary conditions are

V�0, t� � Vx�0, t� � Vxx�L, t� � Vxxx�L, t� � 0: �27�
Then applying the Galerkin method, one obtains

�fj�t� � o2
jp � e �Y2 cos �Yt

Xn
i�1

Pij

 !" #
fj�t� � 0, j � 1, 2, . . . , n, �28�

where o2
jp �Mjj and Pij � ÿQij �Nij ÿ Rij. From Hsu's method [1], it is seen

that only Pij have the effect on the instability regions of the system. The unstable



DYNAMIC STABILITY OF BEAM 229

regions will be obtained as follows:

o1p is near 1=2, the system is unstable if l21p < �Y4P2
11=4o

2
1p, �29�

o1p � o2p is near 1, the system is unstable if l22p < �Y4P12P21=4o1po2p, �30�

o2p ÿ o1p is near 1, the system is unstable if l23p < ÿ �Y4P12P21=4o1po2p, �31�
where 2o1p � el1p � 1, o1p � o2p � el2p � 1 and o2p ÿ o1p � el3p � 1.

5. STABILITY BOUNDARIES BY BOLOTIN'S METHOD

Bolotin's method ®nds the boundaries of instability regions in the position
parameter e vs. excitation frequency �Y by virtue of the existence of a periodic
solution with periods T and 2T. Thus, the solutions on these boundaries can be
represented in Fourier series form

f f g � fag �
X1
k�1
�ck cos k �Yt� dk sin k �Yt� ck=2 cos

1
2k

�Yt� dk=2 sin
1
2k

�Yt�, �32�

where a, ck, dk, ck/2, and dk/2 are constants.
In the following cases we will discuss: (1) a cantilever beam with a tip mass

me 6� 0, (2) axial translation only.

Case 1: substituting equation (32) into equation (14), the principal regions of
instability are obtained from the zeros of the central elements of the system as

ÿ�f2=4��I � � �M1� ÿ �e=2��D1� 0
0 ÿ�f2=4��I � � �M1� � �e=2��D1�

� �
� 0, �33�

where f � �YÿY, �M1� � o2
ie and �D1� � �Y2��Q� ÿ �me�N��. These principal

regions of instability are composed of single sine and cosine harmonics.

Case 2: equation (28) can be cast in the following ®rst order form:

f _X�t�g � �H�t��fX�t�g, �34�
where

f _X�t�g � f �t�
ft�t�
� �

, �H�t�� � 0 I
D 0

� �
, �D� � ÿ

XN
i�1

Mij � eY cosYt
XN
i�1

Pij

 !" #
:

From equation (32), Bolotin's method is used to ®nd the regions of unstable
solutions. As a ®rst approximation, the periodic solutions have period 2T with
T=2p/o; thus these boundaries must be represented in Fourier series form. One
has coef®cients of sin( �Yt=2) as

ÿ� �Y2=4�fa1g�I � � �M�fa1g ÿ 1
2e

�Y2fa1g�P� � 0, �35�
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and coef®cients of cos� �Yt=2� as
ÿ� �Y2=4�fa2g�I � � �M�fa2g � 1

2e
�Y2fa2g�P� � 0: �36�

The principal regions of instability are obtained from the zeros of the central
elements of the system. Thus, one obtains

ÿ� �Y2=4��I � � �M� ÿ 1
2e

�Y2�P� 0

0 ÿ �Y2=4�I � � �M� � 1
2e

�Y2�P�

" #
� 0: �37�

Using Bolotin's method, two sets of homogeneous algebraic equations are
obtained. These regions of instability are solved from the zeros of the central
matrix elements of equations (33) and (37).

6. NUMERICAL RESULTS

The stability analyses using both Hsu's and Bolotin's methods are illustrated
in Figure 2 for the system with a constant angular speed _y � 1074�61 rad/s. The
instability regions given by Hsu's method in the three cases of section 4.1 are
shown in Figure 2(a) for oie being near 1

2� �YÿY�, i � 1, 2, . . . , 4; in Figure 2(b)

Figure 2. Instability regions with the constant angular velocity _y � 1074�61 rad/s of a cantilever
beam with a tip mass by using Hsu's method. (a) 1

2� �YÿY� � oie, i=1 (Ð), i=2 (± � ± �), i=3
(� � �) and i=4 (- - -), (b) �YÿY � oie � oje, o1e+o2e (Ð), o1e+o3e (± � ± �), o2e+o3e (± � ± �),
o1e+o4e (- - -), o2e+o4e (- - -) and o3e+o4e (- - -), (c) �YÿY � oie ÿ oje, o2eÿo1e (± � ± �),
o3eÿo1e (� � �), o3eÿo2e (� � �), o4eÿo1e (Ð), o4eÿo2e (Ð) and o4eÿo3e (Ð).
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combination resonance of the sum type for oie+oje being near �YÿY; in
Figure 2(c) combination resonance of the difference type for oje+oie being near
�YÿY.
Instability regions for different angular velocities of a cantilever beam

attached to a translational/rotational base are shown in Figure 3(a±c). The
results are obtained from equation (33) for the ®rst three principal regions in the
order of 1 � 1 (Ð), 2 � 2 (± � ± �), 3 � 3 (- - -). A higher value of the order
corresponds to a larger instability region. The case of the beam is without tip

Figure 4. Instability boundaries of the beam without the tip mass and the base has only the
axial translation. First (Ð), second (± � ± �) and third (- - -) approximations obtained by equation
(39).

Figure 5. Instability regions for �Y � �oie � oje� for i, j=1 (Ð), 2 (± � ± �), 3 (- - -) of the beam
with the same parameters as in Figure 4 by using Hsu's method.
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mass and the base only has the axial translations. The ®rst principal instability
regions oip+ojp, i, j=1, 2, 3 taking equation (37) in the order of 1 � 1 (Ð),
2 � 2 (±-±-) and 3 � 3 (- - -) matrices are shown in Figure 4. It is seen that the
instability region enlarges as the order of the matrix increases. In Figure 5, the
instability regions with the same parameters in Figure 4 are obtained by using
Hsu's method, 2o1p (Ð), o1p+o2p (± � ± �), 2o2p (± � ± �), o1p+o3p (- - -),
o2p+o3p (- - -) and 2o3p (- - -).
In Figure 6, the system has only the axial translation, and tip mass me is zero.

The instability regions obtained by using Hsu's (Ð) and Bolotin's (± � ± �)

Figure 6. Instability regions compared by using Hsu's (Ð) and Bolotin's (- - -) methods for the
beam without tip mass and the base with axial translation only.

Figure 7. Instability regions compared by using Hsu's (Ð) and Bolotin's (± � ± �) methods for
the beam with tip mass and _y=1074�61 rad/s.
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methods are compared for the principal matrices in the order of 1 � 1, 2 � 2 and
3 � 3. Instability regions are compared in Figure 7 for the beam with the tip
mass. It is observed that the results obtained by using Hsu's method (Ð) are not
in agreement with those by using Bolotin's method (± � ± �). The main reason is
that non-homogeneous terms are neglected in the ®rst order approximations of
Bolotin's method, and the principal matrices are only in the order of 1 � 1, 2 � 2
and 3 � 3.
The effect of tip mass on the instability regions is shown in Figure 8. The

instability regions for the cantilever beam with axial translations are obtained by
using Bolotin's method in the order of the principal matrices 1 � 1, 2 � 2 and
3 � 3. The presence of tip mass cuts off part of the instability regions, which
borders on the frequency axis, and renders impossible the onset of resonance for
suf®ciently small coef®cients of excitation.

7. CONCLUSIONS

The governing equations of a cantilever beam attached to a translation/
rotational base are derived and reduced into the simple ¯exible beam model for
dynamic stability analysis. The velocity and acceleration of the translational
motion of the base are included in the formulation. In order to apply the
Galerkin method, variable transformation is necessary to make the boundary
conditions homogeneous. Periodic solutions composed of sine and cosine
harmonics are used in Bolotin's method. The instability conditions are obtained
from the zeros of the central elements of the system. Hsu's method is extended
successfully to investigate the instability regions of the nonhomogeneous
solutions. The effects of rotational angular speed and tip mass on the instability
regions are investigated and compared by using both Hsu's and Bolotin's
methods.

Figure 8. The effect of tip mass on the instability regions of the beam. With tip mass (± � ± �),
without tip mass (Ð).
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APPENDIX A

A.1. TIMOSHENKO BEAM THEORY

A position vector of any material point P(x, y) before deformation is

r�x, y, t� � �a�t� � x cos yÿ y sin y�I� �b�t� � x sin y� y cos y�J, �A1�
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where I, J are the unit vectors of the ®xed co-ordinate; a(t) and b(t) are time
dependent.
The displacement ®eld is

U�x, y, t� � ��uÿ yc� cos yÿ v sin y�I� ��uÿ yc� sin y� v cos y�J, �A2�
where u(x, t) and v(x, t) represent the axial and transverse displacements of the
beam respectively; c(x, t) is the rotatory angle of cross section due to bending
alone.
Accordingly, the position vector of that point after deformation is

R�x, y, t� � r�x, y, t� �U�x, y, t�: �A3�
Taking total derivative of R(x, y, t) with respect to time, one obtains

_R�x, y, t� � fat � ��ut ÿ yct� ÿ _y�y� v�� cos y� �ÿvt ÿ _y�x� uÿ yc�� sin ygi

� fbt � �vt � _y�x� uÿ yc�� cos y� ��ut ÿ yct� ÿ _y�y� v�� sin ygJ:
�A4�

Therefore, the kinetic energy of the beam is

K:E: � 1
2r
�
V

� _R� _R� dV �
�`
0

T dx,

T � 1
2rAhfat � ��ut ÿ yct� ÿ _y�y� v�� cos y� �ÿvt ÿ _y�x� uÿ yc�� sin yg2

� fbt � �vt � _y�x� uÿ yc�� cos y� ��ut ÿ yct� ÿ _y�y� v�� sin yg2i, �A5�
and of the tip mass is

Tm � 1
2me� _R� _R�jx�`

� 1
2mehfat � ��ut�`, t� ÿ yct�`, t�� ÿ _y�y� v�`, t��� cos y

� �ÿvt�`, t� ÿ _y�x� u�`, t� ÿ yc�`, t��� sin yg2

� fbt � �vt�`, t� � _y�x� u�`, t� ÿ yc�`, t��� cos y

� ��ut�`, t� ÿ yct�`, t�� ÿ _y�y� v�`, t��� sin yg2i, �A6�
where r is mass density of the beam and me is the tip mass.
The Lagrangian strains in the corresponding directions are

exx � ux ÿ ycx � 1
2v

2
x, exy � 1

2�ÿc� vx�, eyy � 0, �A7�
where the higher order terms 1

2�ux ÿ ycx�2 in exx, uxc and yccx in exy and 1
2c

2 in
eyy are neglected. Hence, the total strain energy can be written as

S:E: � 1
2

�
V

�sxxexx � sxyexy � syyeyy� dV �
�`
0

U� dx, �A8�
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where

U� � 1
2�EA�ux � 1

2v
2
x�2 � EIc2

x � KGA�vx ÿ c�2�, �A9�
and E is Young's modulus of the material. Therefore, the Lagrangian density of
the system is

L�x, t; u, ux, ut, v, vx, vt, c, cx, ct� � TÿU�: �A10�
Hamilton's principle for the system is�t2

t1

�`
0

dL dx� dTm

� �
dt � 0, �A11�

where the variation of kinetic energy of the tip mass is�t2
t1

dTm �
�t2
t1

me
_R�`, 0, t��d _R�`, 0, t� dt

� �me
_R�`, 0, t��dR�`, 0, t��t2t1 ÿ

�t2
t1

�me
�R�`, 0, t��dR�`, 0, t�� dt: �A12�

Taking variation, applying the technique of integration by parts, substituting
(A10) and (A12) into (A11) and collecting the like terms, one obtains

0 �
�t2
t1

�`
0

�
@L
@u
ÿ @

@t

@L
@ _u
ÿ @

@x

@L
@ux

� �
du� @L

@v
ÿ @

@t

@L
@ _v
ÿ @

@x

@L
@vx

� �
dv

� @L
@c
ÿ @

@t

@L
@ _c
ÿ @

@x

@L
@cx

� �
dc
�
dx dt

�
�t2
t1

@L
@ux

du� @L
@vx

dv� @L
@cx

dc
� �`

0

ÿme
�R�`, 0, t��dR�`, 0, t�

" #
dt: �A13�

After substituting equations (A5), (A6) and (A9) into (A13), one has the
following governing equations

u : EA�uxx � vxvxx� ÿ rAutt � rA� _y2�x� u� � 2 _yvt � �yvÿ att cos yÿ btt sin y� � 0,

�A14�

v : EA�uxxvx � uxvxx � 3
2v

2
xvxx� � KGA�vxx ÿ cx� ÿ rAvtt

� rA� _y2vÿ 2 _yut ÿ �y�x� u� ÿ btt cos y� att sin y� � 0, �A15�

c : EIcxx � KGA�vx ÿ c� ÿ rIctt � rI� _y2cÿ �y� � 0, �A16�
and the associated boundary conditions

u�0, t� � v�0, t� � c�0, t� � cx�`, t� � 0, �A17a±d�
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EA�ux�`, t� � 1
2v

2
x�`, t�� �mefatt cos y� btt sin y

� �utt�`, t� ÿ �yv�`, t� ÿ 2 _yvt�`, t� ÿ _y2�`� u�`, t���g � 0, �A18�

EA�ux�`, t� � 1
2v

2
x�`, t��vx�`, t� � KGA�vx�`, t� ÿ c�`, t��

�mefbtt cos yÿ att sin y� �vtt�`, t� � �y�`� u�`, t��

� 2 _yut�`, t� ÿ _y2v�`, t��g � 0: �A19�

A.2. EULER BEAM THEORY

If the beam is slender, Euler beam theory can be used to describe the beam
system by setting c= vx and neglecting the shear deformation and rotary
moment of inertia. The governing equations become

u : EA�uxx � vxvxx� ÿ rAutt � rA� _y2�x� u� � 2 _yvt � �yvÿ att cos yÿ btt sin y� � 0,

�A20�

v : EA�uxxvx � uxvxx � 3
2v

2
xvxx� ÿ rAvtt ÿ EIvxxxx

� rA� _y2vÿ 2 _yut ÿ �y�x� u� ÿ btt cos y� att sin y� � 0, �A21�
and boundary conditions are

u�0, t� � v�0, t� � vx�0, t� � vxx�`, t� � 0, �A22a--d�

EA�ux�`, t� � 1
2v

2
x�`, t�� �mefatt cos y� btt sin y

� �utt�`, t� ÿ �yv�`, t� ÿ 2 _yvt�`, t� ÿ _y2�`� u�`, t���g � 0, �A23�

EA�ux�`, t� � 1
2v

2
x�`, t��vx�`, t� ÿ EIvxxx�`, t�

�mefbtt cos yÿ att sin y� �vtt�`, t� � �y�`� u�`, t��

� 2 _yut�`, t� ÿ _y2v�`, t��g � 0: �A24�

A.3. SIMPLE FLEXURE MODEL

In the simple ¯exible mode, the axial displacement u(x, t) will be eliminated
but retain the inertia effect of the translational and rotational motions of the
base. Thus, one may de®ne

p�x, t� � EA�ux � 1
2v

2
x�, p�`, t� � EA�ux�`, t� � 1

2v
2
x�`, t��: �A25, A26�
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Neglecting u and utt in equation (A20), one gets

px�x, t� � ÿrA� _y2x� 2 _yvt � �yvÿ att cos yÿ btt sin y�: �A27�
Sequentially, substituting equation (A27) into (A21) and neglecting u and ut, one
has

�pvx�x ÿ rAvtt ÿ EIvxxxx � rA� _y2vÿ �yxÿ btt cos y� att sin y� � 0: �A28�
From equations (A25) and (A26), one has

p�x, t� � p�`, t� ÿ
�`
x

@

@x
p�x, t� dx

� ÿmefatt cos y� btt sin y� �ÿ�yv�`, t� ÿ 2 _yvt�`, t� ÿ _y2`�g

� rA� _y212�`2 ÿ x2� � �`ÿ x��ÿatt cos yÿ btt sin y� �
�`
x

�2 _yvt � �yv� dx�:

�A29�
The governing equation (A28) is simpli®ed as equation (1), and the boundary

conditions (A22b±d) and (A24) become equations (2a±d).

APPENDIX B

Dij �
�1
0

fi�x�f�x� dx, Mij �
�1
0

f�4�t �x�fj�x� dx, Nij �
�1
0

f00i �x�fj�x� dx,

Qij �
�1
0

f0i�x�fj�x� dx, Rij �
�1
0

xf00i �x�fj�x� dx, Tij � Uij � kijAj,

Vij � kijBj, Wij � ÿkijBj, Eij � ÿkijz=o2
j , Fij � �Y2:

APPENDIX C

Here, Hsu's method is extended to investigate the non-homogeneous solutions
of equation (14). As e=0, the solution of equation (14) is

fi � Aiq cosoiet� Biq sinoiet� z=o2
ie: �C1�

Equation (14) can be written in the ®rst order form:

dfi=dt � Fi, �C2�
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dFi=dt� o2
ie fi

� ÿe �Y2
Xn
i�1

Xn
j�1

Qij ÿ �me

Xn
j�1

Nij

 !
cos� �YÿY�t

" #
fi � e �Y2 sin� �YÿY�t� z:

�C3�
A proposed solution for the ®rst order analysis is of the form:

fi � Aiq�t� cosoiet� Biq�t� sinoiet� z=o2
ie � ef �1�ip �t�: �C4�

The ®rst three terms on the right-side are called the ``variational'' part of the
solution, and the fourth term is the ``perturbational'' part of the solution.
Further details will be based upon the two-mode approximation. These are the
coef®cients of e0,

�dA1q=dt� coso1et� �dB1q=dt� sino1et � 0, �C5�

�dA2q=dt� coso2et� �dB2q=dt� sino2et � 0, �C6�

ÿo1e�dA1q=dt� sino1et� o1e�dB1q=dt� coso1et � ÿz=o2
1e � z, �C7�

ÿo2e�dA2q=dt� sino2et� o2e�dB2q=dt� coso2et � ÿz=o2
2e � z: �C8�

The perturbational equations are obtained from the coef®cients of e1,

df1
dt
� o2

1e f1 � ÿ1
2

�X2
j�1

T1j cos� �YÿY� oie�t�
X2
j�1

U1j cos� �YÿYÿ oie�t

�
X2
j�1

V1j sin� �YÿY� oie�t�
X2
j�1

W1j sin� �YÿYÿ o1e�t
�

ÿ 2
X2
j�1

E1j cos� �YÿY�tÿ 2
X2
j�1

F1j sin� �YÿY�t, �C9�

df2
dt
� o2

2e f2 � ÿ1
2

�X2
j�1

T2j cos� �YÿY� oie�t�
X2
j�1

U2j cos� �YÿYÿ oie�t

�
X2
j�1

V2j sin� �YÿY� oie�t�
X2
j�1

W2j sin� �YÿYÿ o2e�t
�

ÿ 2
X2
j�1

E2j cos� �YÿY�tÿ 2
X2
j�1

F2j sin� �YÿY�t: �C10�
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The particular integrals to the perturbational equations by using Hsu's
method are shown in equation (16). The non-homogeneous equation is stable
(perturbation part) in this case; the denominator o2

1e ÿ � �YÿY�2 in equation
(16) is nearly equal to zero. A solution is found for o1e1 �YÿY and described
by o1e � el � �YÿY, where l is a ®nite real number.
The offending terms are then associated with the ®rst perturbational equation

(C9), and the perturbational equations after removing the offending terms are

d2f1
dt2
� o2

1e f1 � ÿ1
2

�X2
j�1

T1j cos� �YÿY� oje�t� V1j sin� �YÿY� oje�t

�
X2
j�1

U1j cos� �YÿYÿ oje�t�W1j sin� �YÿYÿ oje�t
�
, �C11�

d2f2
dt2
� o2

2e f2 � ÿ2�E2j cos� �YÿY�t� F2j sin� �YÿY�t�

ÿ 1
2

�X2
j�1

T2j cos� �YÿY� oje�t� V2j sin� �YÿY� oj�t

�
X2
j�1

U2j cos� �YÿYÿ oje�t�W2j sin� �YÿYÿ oje�t
�
: �C12�

The variational equations become

�dAiq=dt� cosoiet� �dBiq=dt� sinoiet � 0, i � 1, 2, �C13�

ÿ o1e�dA1q=dt� sino1et� o1e�dB1q=dt� coso1et

� efÿ2�E1j cos� �YÿY�t� F1j sin� �YÿY�t�g ÿ z=o2
1e � z, �C14�

ÿo2e�dA2q=dt� sino2et� o2e�dB2q=dt� coso2et � ÿz=o2
2e � z: �C15�

From equations (C13±15), one ®nds

dA1q=dt � ÿdB1q=dt tano1et, dA2q=dt � ÿdB2q=dt tano2et, �C16, C17�

dB1q=dt � ÿ�2e=o1e��Eij cos�o1et� cos� �YÿY�t� Fij cos�o1et� sin� �YÿY�t�
ÿ �1=o1e��z=o2

1e ÿ z� coso1et, �C18�

dB2q=dt � �1=o2q��ÿz=o2
2q � z� coso2et: �C19�

Substituting o1e � �YÿYÿ el into equation (C18), and applying trigonometric
identities, one obtains
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dB1q=dt � ÿ�e=o1e�hEijfcos�2� �YÿY� ÿ el�t� cos�elt�g
� Fijfsin�2� �YÿY� ÿ el�t� sin�elt�gi
ÿ �1=o1e��z=o2

1e ÿ z� coso1et: �C20�
From equation (C20), B1q can easily be found for e=0 or l=0 as

B1q � ÿe=o1eE1jfsin�2� �YÿY��t=2� �YÿY�g
� �e=o1e�F1jfcos�2� �YÿY��t=2� �YÿY�g
ÿ �z=o1e���1ÿ o2

1e�=o2
1e��sin� �YÿY�t=� �YÿY�� � c, �C21�

where c is a constant. When e 6� 0 and l 6� 0, (C21) is simpli®ed as

B1q � ÿ�e=o1e�E1jfsin�2� �YÿY� ÿ el�t=�2� �YÿYÿ el�� � sin elt=elg

� e
o1e

F1j
cos�2� �YÿY� ÿ el�t

2� �YÿY� ÿ el
� cos elt

el

� �

ÿ z

o1e

1ÿ o2
1

o2
1

� �
sin� �YÿYÿ el�t

�YÿYÿ el

� �
� c: �C22�

From (C16) and (C20), one also has

A1q � �e=o1e�E1jfÿ cos�2� �YÿY� ÿ el�t=�2� �YÿY� ÿ el� � cos�elt�=elg

� e
o1e

F1j ÿ sin�2� �YÿY� ÿ el�t
2� �YÿY� ÿ el

� sin�elt�
el

� �

ÿ z

o1e

1ÿ o2
1e

o2
1e

� �
coso1et

�YÿYÿ el

� �
� c1, �C23�

where c1 is a constant.
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